Skip to content
image post
White papers

Building a semantic role labelling system for Vietnamese

April 16, 2024

Share with:


AuthorsThai-Hoang PhamXuan-Khoai PhamPhuong Le-Hong

Abstract: Semantic role labelling (SRL) is a task in natural language processing which detects and classifies the semantic arguments associated with the predicates of a sentence. It is an important step towards understanding the meaning of a natural language. There exists SRL systems for well-studied languages like English, Chinese or Japanese but there is not any such system for the Vietnamese language. In this paper, we present the first SRL system for Vietnamese with encouraging accuracy. We first demonstrate that a simple application of SRL techniques developed for English could not give a good accuracy for Vietnamese. We then introduce a new algorithm for extracting candidate syntactic constituents, which is much more accurate than the common node-mapping algorithm usually used in the identification step. Finally, in the classification step, in addition to the common linguistic features, we propose novel and useful features for use in SRL. Our SRL system achieves an F1 score of 73.53% on the Vietnamese PropBank corpus. This system, including software and corpus, is available as an open source project and we believe that it is a good baseline for the development of future Vietnamese SRL systems.

Download now

Do you need a workthrough of our platform? Let us know

    Related Posts

    Get ahead with AI-powered technology updates!

    Subscribe now to our newsletter for exclusive insights, expert analysis, and cutting-edge developments delivered straight to your inbox!