Skip to content
center-gradient-cover-bg
right-gradient-cover-bg
background gradient desk
Blog

What is Agentic AI? The differences between GenAI and Agentic AI

January 5, 2025

Share with:

Continuing Generative AI, Agentic AI emerges as a promising technology, ushering in a new era of autonomy and independent thinking for artificial intelligence applications. What exactly is Agentic AI, and how does it differ from Generative AI? Let’s explore with FPT.AI in the following article.

What is Agentic AI?

As a new branch of artificial intelligence, Agentic AI represents systems equipped with Reinforcement Learning, language self-awareness, and contextual decision-making capabilities. It can analyze, set goals, strategize, make decisions, and even adjust its behavior through trial-and-error mechanisms to ensure goal achievement without continuous human intervention.

One of Agentic AI’s standout features is its ability to “chain tasks”—breaking down complex missions into smaller, manageable steps that can be efficiently executed. For instance, when tasked with creating a website, an AI agent system can autonomously plan and execute steps such as:

  1. Designing the website structure and layout.
  2. Drafting content for individual pages.
  3. Writing necessary HTML, CSS, and backend code.
  4. Designing graphics and integrating visuals.
  5. Testing responsiveness and fixing any issues.
Agentic AI
Agentic AI is a new branch of Artificial Intelligence

>>> Explore: What Are AI Agents? The Difference Between AI Agents and AI Chatbots

How Does Agentic AI Work?

Agentic AI operates through a four-step process to effectively and autonomously solve problems:

  1. Perceive: It gathers and processes data from various sources like sensors, databases, and digital interfaces. This step involves extracting meaningful features, identifying objects, and recognizing relevant entities to build a comprehensive understanding of the surrounding context.
  2. Reason: Large Language Models (LLMs) serve as reasoning engines, understanding tasks, generating solutions, and collaborating with specialized models to perform functions like content creation, image processing, or recommendation systems. Techniques such as Retrieval-Augmented Generation (RAG) are used to access proprietary data sources, enabling precise and contextually relevant results.
  3. Act: By integrating with external tools and software through APIs, Agentic AI quickly executes tasks based on predefined plans. Control measures ensure accurate task completion, such as capping spending limits for customer service agents.
  4. Learn: Through a continuous feedback loop called the Data Flywheel, Agentic AI learns from its interactions. Data is constantly collected and analyzed to refine models, adapt strategies, and enhance decision-making over time, thereby improving operational efficiency.
What is agentic ai
Agentic AI operates through a four-step process

>> Read more about: What is an LLM Agent? How it works, advantages, and disadvantages

The Difference Between Agentic AI and Generative AI

Agentic AI surpasses both traditional AI systems and Generative AI (GenAI). Below is a comparison to clarify the differences:

Feature Traditional AI Generative AI (GenAI) Agentic AI
Core Capability Automates repetitive tasks with fixed rules. Relies on human programming and oversight. Creates new content like text, images, audio, and code. Operates based on human commands, enhancing creativity and efficiency. Acts autonomously, setting goals, strategizing, making decisions, and executing actions independently.
Autonomy Lacks autonomy; follows pre-programmed rules. Limited autonomy; depends on human guidance for context and output. High autonomy; makes decisions and acts without continuous human intervention.
Learning Cannot learn; executes pre-set rules. Learns from large datasets to improve results but requires human prompts to act. Learns from experience, adapts over time, and optimizes actions and goals autonomously.
Responsiveness Predefined responses, static reactions. More flexible responses based on context but relies on user commands and training data. Proactively adapts strategies and goals based on situational context and objectives.
Decision-Making Limited, rule-based. Suggests ideas based on prompts. Sets goals and makes contextual decisions independently.

While both technologies fall under artificial intelligence, they cater to distinct purposes. Agentic AI focuses on autonomous actions and complex task execution without continuous oversight, while GenAI relies on human input to determine the context and goals for creative outputs.

The core distinction lies in their outputs: GenAI produces creative content, while Agentic AI delivers actionable solutions and decisions. Together, they can form powerful systems that combine creativity with automation, enhancing efficiency across diverse applications.

>>> Explore: What Are Intelligent Agents? The Difference Between AI Agents and Intelligent Agents

Real-World Applications of Agentic AI

Agentic AI holds vast potential for applications across various industries. Here are some notable examples:

  1. Business Operations: Handles massive datasets, automates supply chain management, optimizes inventory levels, forecasts demand, and manages complex logistics plans in real-time, enhancing efficiency and reducing costs.
  2. Healthcare: Functions as 24/7 health assistants, personalizing treatment plans and offering proactive care by predicting potential health issues through Big Data analysis.
  3. Software Development: Manages the entire software development lifecycle, from designing architecture and coding to debugging and quality assurance, revolutionizing how digital products are built and maintained.
  4. Cybersecurity: Monitors network traffic, detects anomalies, and addresses real-time threats without human oversight, allowing experts to focus on complex challenges.
  5. Human Resources: Automates tasks like candidate screening, interview scheduling, onboarding, and training while providing personalized career development advice.
  6. Scientific Research: Accelerates breakthroughs by automating experiments, analyzing results, and formulating new hypotheses, driving innovation across various scientific fields.
  7. Finance: Revolutionizes portfolio management, market trend analysis, and real-time investment strategies, enabling higher returns for investors.
Agentic AI
Practical application of Agentic AI

>>> Explore: What is a Multi Agent System (MAS)?

Why Is Agentic AI a Promising Technology Trend?

Agentic AI is gaining significant attention in the tech world for the following reasons:

  • High Autonomy: Operates independently, making it invaluable for tasks requiring constant monitoring or rapid decision-making.
  • Problem-Solving Capabilities: Combines machine learning with goal-oriented behavior to provide innovative and efficient solutions.
  • Flexibility and Adaptability: Adjusts strategies dynamically based on new information or environmental changes.
  • Personalization: Delivers tailored solutions by learning from previous interactions, enhancing customer service processes.
  • Scalability: Deployable across various applications and industries after training, enabling rapid and effective transformation.
  • Enhanced Communication: Processes natural language effectively, facilitating seamless human interaction and control.
Agentic AI
Autonomy is one of the main reasons why Agentic AI is gaining attention from the tech community

Challenges in Deploying Agentic AI

Despite its potential, implementing Agentic AI poses significant challenges:

  1. Security Risks: Independent decision-making can expose systems to vulnerabilities, such as adversarial attacks, requiring robust security measures.
  2. Unintended Behaviors: Autonomy may lead to unforeseen actions, necessitating transparent decision-making frameworks for effective management.
  3. Resource Costs: Large-scale Agentic AI models demand substantial energy and data, raising sustainability concerns.
  4. Ethical and Social Issues: Concerns include job automation, accountability for AI-driven decisions, and biases in training data affecting outcomes in sensitive areas like law enforcement or recruitment.
  5. Human Oversight: Developing safety mechanisms like kill switches to control autonomous systems is complex, raising concerns about alignment with human values.

In conclusion, Agentic AI offers vast potential for enhancing efficiency and automation across industries. However, balancing AI autonomy with human oversight is crucial to fully realizing its capabilities. For more information on FPT.AI solutions, contact us via email: support@fpt.ai or hotline: 1900 638 399.

Đánh giá
Related Posts
image post
Blog
FPT AI Readerを使用して画像から情報を抽出する方法

FPT AI Readerは、OCR技術を使用して、既存の文書テンプレート(個人書類、請求書)や任意のカスタム文書形式(契約書、証明書など)から画像の内容を正確に認識および抽出するアプリケーションであり、迅速かつ便利に文書をデジタル化します。この記事では、FPT.AIがFPT AI Readerを使用して画像から情報を抽出する方法を説明します。一緒に見てみましょう! FPT AI Readerのアカウント登録と言語選択 FPT.AIの専門家によって研究開発されたFPT AI Readerアプリケーションは、人工知能(AI)とコンピュータビジョン、光学文字認識(OCR)、インテリジェントドキュメント処理(IDP)技術を使用し、画像処理技術と自然言語処理(NLP)を組み合わせて、ユーザーが数秒で正確に文書をデジタル化し、高いセキュリティと簡単な保存を実現します。 FPT.AI Readerアプリケーションを使用するには、FPT IDアカウントが必要です。アカウントをお持ちでない場合は、こちらで登録してください: https://id.fptcloud.com/.その後、こちらにアクセスしてください: https://reader.fpt.ai/ 素晴らしい体験を始めましょう! FPT AI Readerアプリケーションは、英語とベトナム語の2つの言語をサポートしています。画面右上のアイコンをクリックして使用する言語を選択してください。   FPT AI Readerの既存の文書ライブラリを使用して情報を抽出する方法 次に、FPT AI Readerのライブラリに既にある画像文書の種類から情報を抽出するには、次の手順を実行します。 文書テンプレートの選択 まず、画面右上のライブラリをクリックすると、FPT AI Readerのインターフェースに、アプリケーションに統合された文書テンプレートが表示され、抽出精度は最大98%です。 現在、FPT AI Readerは、個人書類や異なる業界分野の文書テンプレートから情報をデジタル化することをサポートしており、例えば、身分証明書、運転免許証、パスポート、出生証明書、請求書、保険証書などがあります。 使用を開始するには、データを抽出する文書の種類をクリックし、プロジェクトに名前を付けて、作成をクリックする必要があります。この記事では、運転免許証の文書を例にします。 この時点で、画面のインターフェースには、運転免許証の情報を抽出する際に使用する重要な情報フィールドと関連データ(名前、ステータス、更新時間、作成時間、モデルの使用、アクション)が表示されます。 データのアップロード 続行するには、画面右上のアップロードを選択し、運転免許証の画像をシステムにアップロードします。注意: 1ファイルのアップロード容量は5MBを超えないようにし、jpg、png、pdfなどの画像形式を受け入れます。 画面の左下隅にあるファイル選択 (1) をクリックして、複数の画像ファイルを同時にアップロードできます。アップロードする運転免許証の画像ファイルを選択した後、アップロード (2) をクリックしてこの手順を完了します。 運転免許証の画像がシステムに正常にアップロードされると、FPT AI Readerは数秒で画像を自動的に処理し、画像のステータスを処理済みに変更します。この時点で、各行をクリックして運転免許証の画像と抽出結果を表示できます。 (注意: 画像はあくまで参考用であり、実際の使用価値はありません) 他の正常にアップロードされた運転免許証の画像でも同様に操作します。OCR技術を使用して、FPT AI Readerは、画像がぼやけている、文字が不鮮明である、異なる色の領域がある、文字が重なっている、画像が整列していないなどの条件でも高精度で認識できます(例: 下の画像の「ngày/date 05 tháng/month … Continued

Get ahead with AI-powered technology updates!

Subscribe now to our newsletter for exclusive insights, expert analysis, and cutting-edge developments delivered straight to your inbox!